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Table 3. The final parameters of hydrogen atoms 
x y z B Bonded to 

H(1) 0.133 1.094 0.659 3.3 N 
H(2) 0.027 0"964 0"766 1-7 N 
H(3) 0"126 1.073 0"936 6.1 N 
H(4) 0-208 0-459 1"035 4.4 0(2) 
H(5) 0.165 0"735 0"581 0.3 C(4) 
H(6) 0"337 0.979 0"530 3"3 C(2) 
H(7) 0"365 1.074 1"010 7"6 C(3) 
H(8) 0.381 0.865 1-037 3.9 C(3) 
H(9) 0.478 1.017 0-887 4-8 C(3) 
H(10) 0.434 0-631 0.695 4.9 C(1) 
H(I 1) 0.488 0.780 0.552 4-1 C(1) 
H(12) 0.370 0.664 0.458 2.3 C(1) 

(a(x)) = 0"07 (a(y)) =0"08 (a(z)) = 0.07 A 
(a(B)> = 1"9 A 2 

There are significant differences between the temperature 
factors of the two investigations; the differences may be 
due to the neglect of absorption. Significant differences are 
also found in the positional parameters. For example, the 
difference in x of O(1) is 10G; x of O(2), 9or; y of O(1), 12a; 
z of O(2), 8tr; z of C(5), 7o', where the o-'s are the standard 
deviations in our result. It is interesting that all these atoms 
belong to the carboxyl group; the differences resulted in a 
large deviation of the configuration of the carboxyl group. 
Most of the differences of the bond lengths and angles are, 
however, not significant considering the experimental ac- 
curacies. The bond lengths and angles in the valine mol- 
ecule are shown in Fig. 1; the averages of their standard 
deviations are 0.009 A and 0.6 ° (Parthasarathy's values, 
0.018/~ and 1.5°). 

Parthasarathy suggested the possible existence of a bi- 
furcated hydrogen bond among N, CI" and O(I") (see 
Fig. 3 of Parthasarathy's paper). In the present study, how- 
ever, only the N-H(2) . . .C I "  contact seems to be a hydro- 
gen bond, while N ' - . O ( 1 " )  seems to be a normal ionic 
contact, because the H(2)- . .O(1") distance of 2.60 A cor- 
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Fig. 2. The environment of the H(2) atom. The contact between 
H(2) and O(1") does not seem to be a hydrogen bond. 

responds to a normal van der Waals contact, and H(2) is 
too far from the line of N . . .O(1" ) ,  though the distance of 
N."  .O(1") corresponds to that of the weakest hydrogen 
bond. The N - . .  O(1") distance is 2.99 A in Parthasarathy's 
result but 3-06 A in ours. The atoms, N, H(2), CI" and 
O(1 "), are roughly coplanar, and they are shown in Fig. 2. 
Many examples have been reported in which four negatively 
charged atoms approach a protonated amino group within 
hydrogen-bonding distances and only three of them are 
hydrogen-bonded. 

We express our thanks to Dr R.Parthasarathy and to 
Professors R. Srinivasan and G. N. Ramachandran for their 
kind suggestion to present this paper. The authors' thanks 
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financial support. 
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A set of non-linear phase equations is derived. The coefficients depend on the knowledge of structure am- 
plitudes and the position of some 'heavy atoms'. An approximate set of phases based on structure factor 
calculations using the known heavy atoms can then be refined to satisfy the equations exactly. Thus non- 
heavy-atom structural information can be derived without interpretation of heavy-atom based Fourier 
maps which may require chemical information and intuition. 

Main & Rossmann (1966) and Main (1967) have shown 
that the use of the molecular replacement equations may 
lead to a satisfactory solution of the phase problem when- 
ever the asymmetric unit can be divided into different parts 
with related structures. Let us now divide the unit cell into 
a known (heavy-atom) and unknown part. 

Let the structure factor of reflexion p of the known part 
of the cell be f~o. Then by definition, 

fv = IuQ(x)exp{2rdp. x}. dx ,  (1) 

where the integral is taken over the volume U of the known 
part of the cell, and 0(x) is the total electron density distri- 
bution within the cell. 

But 

O(x)= 1 27 Fn exp{ -2n ih ,  x}. dx .  (2) 
V h 

Hence by substituting (2) in (1) we have 

Z Fh x p { 2 r d ~ - h ) ,  x}.  dx.  f " =  V h 
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The integral can be easily evaluated if we consider each of 
the N known atoms to be enclosed in a sphere of radius 
R and centred at Sn, the total volume enclosed being U. 
Then 

I exp{2~zi(p-h), x}.  dx = 

4zcR 3 N 
- -  Gr, v S exp{2rd(9-h).  S,~}, 

3 n = l  

where 

3 [sin (2rcHR) - (2rcHR) cos (2rcHR)] 
Ghp 

(2r~HR) 3 

and H =  1(9- h)l. 

Hence 

4rcR3 ZFhGhv 2; exp{2~ri(9-h). Sn} . 
I v -  3V h n=1 

(3) 

The equations (3) are of the same form as the molecular 
replacement equations, although there will be many more 
significant terms per equation owing to the slower decrease 

of G as H increases. They express the relationship between 
the structure factors Fh when part of the cell is of known 
structure. 

Now fp can be calculated and an initial solution of the 
phases of Fn can be found from the usual heavy-atom tech- 
niques. Improvement of these phases can then be made by 
the methods described in the paper by Main (1967) in order 
to achieve better satisfaction of equations (3). Hence the 
heavy-atom phases may be improved without any chemical 
knowledge. An application of these equations may there- 
fore be of help when a heavy atom is sufficiently weak not 
to permit easy recognition of chemical information, when 
resolution is too poor for recognition of chemical groups, 
or when approximate phases have been determined by 
means of poorly isomorphous derivatives. 

This work was supported by N.S.F. grant GB-02905 and 
by N.I.H. grant GM-10704-03. 
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The moments method in X-ray line-profile analysis described by Harrison yields automatically the so-called 
'particle-size' coefficients besides the deformation moments. Simple matrix inversion gives the deformation 
moments multiplied by the particle-size coefficient and, since the zero-order moment has to be equal to 
one, the particle size coefficient can be obtained directly. 

Harrison (1966) has described the possibility of determining 
the distribution of deformation on the basis of distortion 
coefficients obtained from X-ray diffraction lines. We should 
like to contribute to this work by showing that if we do not 
suppose that the deformation and particle-size coefficients 
have ah'eady been separated by some other method, then 
the moments method described by Harrison yields auto- 
matically the particle-size coefficients besides the deforma- 
tion moments. 

Using the notation of Harrison let us put down the 
Fourier coefficients of a diffraction line of a cubic crystal 
expanded by the deformation moments: 

_ , _  1 (2nhoL/a)2A~n(e~) A ,~ - A ,, -~. 

+ 1 (2r&oL/a)4A],(e4)  _ . . .  (1) 

B,, = - (2rchoL/a)A~ (eL) 

1, (2r&oL/a)3A~(e3z ) -  . . .  (2) + 
j l ,  

where <ekL) denotes the kth moment of deformation eL, 
index L denotes the averaging distance in the crystal, a is 
the length of the unit-cell edge in the direction of the dif- 
fraction and h~ = h2 + k2 + 12. 

Harrison (1966) has shown that if the particle-size co- 
efficients AS, are known, then by measuring a number of 

reflexions, say m, the deformation distribution can be deter- 
mined with the help of equation systems (1) and (2). 

Let us construct the vectors an and bn from the coeffi- 
cients An and Bn belonging to the same n suffixes but to 
different reflexions and the vectors ee and eo from the even 
and odd moments (e~ k) and (e~. k+x) (where k = 0 , 1 , 2 , . . .  
m - 1 ) .  Here we have supposed that the 2mth or higher 
deformation moments can be neglected. Let us further de- 
note the following square matrices of order m by Pn and Rn 

e n =  - ~ - .  . .  

1 (2z& ° L/a)  2 - ~ .  

l ( 2 n h ° L / a ) 3  i )  (4) Rn = - (2rchoL/a) -~. . .  

1 (2zrh0 L/a)  3 \ -  (2r&'o L/a)  -~. 

where each row of the matrix belongs to a certain reflexion, 
the rows being arranged in increasing order of the reflex- 
ions downward. 

The equation systems (1) and (2) can be written in the 
following form: 

a,~ = A~,Pnee (5) 
b,, = A~R,~eo . (6) 


